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1

Tools: relativity

In this section we introduce some results from the general theory of
relativity. More details can be found, for example, in Weinberg (1972).
The fundamental quantity in the theory is the metric tensor g,,,. In fixing
it we adopt the usual point of view in cosmology that local metric
irregularities due to stars and galaxies, and the like, are ignorable in the
large. This is canonized into what is known as the “cosmological principle”;
ie., that the universe, taken on average, is and always has been homo-
geneous and isotropic. That is to say, at any epoch the universe appears
the same in all spatial directions when observed from any spatial point.
The first person to use this principle to derive, in a mathematically
satisfactory way, the form of the metric tensor was H. P. Robertson
(Robertson, 1929). He showed, in units in which i = ¢ = 1, that

ds? = —g,,dx*dx” = di? — e /h;dx'dx’. (1.1)

Here the hy; are functions of the spatial variables x?, x2, x3 and f is an
arbitrary, real, function of the time ¢. Robertson gives as an example the
case in which

f=1t x constant,
which is what we now call the de Sitter inflationary universe (de Sitter,
1917). This, as we shall shortly show, is one of the two cases in which the

curvature of the universe remains constant in time. The other case is the so-
called Einstein cosmology (Einstein, 1917) in which

f=0.

Introducing polar coordinates, as Robertson did, we can rewrite (1.1) in
the now familiar form

dr?
1 — kr?

ds? = dt2 — RZ(z)( +r2do? + 12 sin20d¢2>. (12)

The scales of R and r can be chosen so that k =0, +1. Some general
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relativity formulae will be useful. In terms of the metric tensor, g**, the
covariant derivatives of an arbitrary vector field 4, or 4* =g*'4,,
where g** is given by the relation

9"'g;, = 04, (1.3)
are defined by the equations
A%y= A, + T3A% (1.4)
and
Ay = A, — L4, (1.5)

where, as is customary, the comma denotes the ordinary derivative and
I'*_is the Christoffel symbol defined in terms of the metric by

T% = 3(Gaoy + Gvao — o )9 ™ (1.6)
For the metric of (1.2) the g,, are given by
Joo = —1, (1.7
gio =0,
and
gy = Rz(t)éijs (1.8)
where, in polar coordinates,
G = ﬁ (1.9)

goo = r2,
Jop = r*sin? 6,
g;=0, i#]
We are implicitly using here what are known as “comoving” coordinates.
This means that a galaxy, say, is assigned values of r, §, and ¢ which remain

the same as the universe expands. The points on the mesh which define the
coordinate grid, expand with the grid. If we call

g = —detg,, (1.10)
then, for our metric

R%r*sin* 9

= (1.11)

g:
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and the invariant volume element is given by
dV = gidx, dx, dx; dx,. (1.12)

Because of the simplicity of the metric the only nonvanishing Christoffel
components are

r?jz RRéij (1.13)
i R i i
0j = R 5; =TI
kr
M1 = 1 — kr?
rl=—-0—-k¥r
[ =—(1—kr?)rsin®6
Iﬂ122 = 1"221 = rl% = Iﬂ331 =1r
;3 = —sinfcosf
I3 =T33 =coth.

Inmost of our later work we shall restrict ourselves to the k = O(spatially
flat) case. If we write the spatially flat metric as

ds? = dt? — R2(t)(dx? + dx2 + dx2), (1.14)

we have, with this Cartesian choice,

Joo = —1 (1.15)
gio=10
gy = R*(t)dy,
and
7 = RRy; (1.16)
I, = R3Y/R
i =0

Because of the rotational symmetry of the sections of space orthogonal
to a given time direction the spatial components of the Riemann—
Christoffel tensor R, take this form in the k # O case:

Riju = A(gjkgil - gjlgik)' (1.17)



4 Kinetic theory in the expanding universe

This satisfies the general symmetry conditions
Raﬁvb = _Raﬂév = —Rﬁavﬁ = Rv&ﬂa = Rﬁaév' (118)

In (1.17) A is a time-dependent spatial scalar. To evaluate it we use the
general definition of Rz,

1( 0 zgap 0 Zng 0 Zgaé 0 29/35

Ry, =1 - - LT, — T0).
6 = 2\ Gxvox® | ox0x®  oxPox” 6x“6x”)+g""( salps — Taall)
(1.19)

Because of the structure of (1.17) any spatial component will do. Thus,
for example,

r2R 2 .
Royw =12k + R?), (1.20)
from which it follows that
k + R?
A= &z (1.21)
The Ricci tensor is defined to be
Rpx = glleuvx = qu (1'22)

= ginipjk + gooRouo»c-
We begin by evaluating its spatial components. Thus
Ry = g"Ryjm + 9%°Roi0m (1.23)
= gijA{gljgim - glmgij} — Roiom = —2Agim — Roiom
As
Rotom = RRGim, (1.24)
R, = —§m[2k + 2R? + RR].
On the other hand
Rox = 9" Riou (1.25)
= g"Rioja + 9% Roooss
from which it follows that
Roo = g"Rigjo = 3R/R, (1.26)
while

Ry, = 0. (127)
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The invariant curvature “’R is defined to be

(4)R = glvguKR).uvx (128)
=g" R, = 9d%Roo + gR;;

k R* R
e ie7)

The statement that this curvature remains constant in time leads, with
k = 0, to the equation

LU (1.29)
This equation, as advertised, has only the solutions
R = Rye” (1.30)
and
R =R,, (1.31)

which is to say only the Einstein and de Sitter spaces evolve with constant

curvature.
The covariant divergence of a contravariant tensor is defined to be

v 1 v v
T* = ‘é: b—“(ng” ) + F T“l (1.32)

We may verify, using this definition, that

(R* — $g*"*R),, = 0. (1.33)
We have for a covariant tensor
aT,,
T;lv;). = ax“). pitvp T FV‘):’I:IP (134)
or
0T,
uV:uzg_r‘uﬁTw LT (1.35)
A Killing vector is a four-vector that satisfies the condition
Ay +A4,,=0 (1.36)

For any component v — no sum,

A,,=0. (1.37)

viv
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We can also write the Killing condition as
A+ A, =A,,+A4,,— 2[4, (1.38)
= Gup A% + 94y A% + G, A7 = 0.

As we shall see, an important remark for the kinetic theory in a
Robertson-Walker expanding universe is, that for nonconstant R(t), there
are no nonvanishing timelike spatially independent Killing vectors.' To this
end, suppose that 4?7 were such a vector. We could then find a frame of

reference in which the only nonvanishing component is A°. In this frame
(1.38) takes the form

gIIOA?V + ngA?u + guv,OAO = 0 (139)
If we take y = v = | then

1 d
AO — — R24° = A 1.4
di1,0 1 —kr? dt RA 0 (1.40)

from which the conclusion follows.
We next turn to cosmodynamics.

* The more general statement is that for nonstationary Robertson—Walker
matrixes there is no spacelike Killing vector. I am grateful to E. Weinberg for a
proof of this theorem. The weaker version given in the text is sufficient for our
purposes.



